Page 3 of 4
Spleen
The spleen breaks down both red and white blood cells that are spent. This is why it is sometimes known as the 'graveyard of red blood cells' . A product of this digestion is the pigment bilirubin which is sent to the liver and secreted in the bile. Another product is iron which is used in the formation of new blood cells in the bone marrow.
Western medicine treats the spleen solely as belonging to the lymphatic system, though it is acknowledged that the full range of its important functions is not yet understood.
In contrast to this view, traditional Chinese medicine sees the spleen to be of central importance in the digestive system. The role of the spleen is seen to affect the health and vitality of the body in its turning of digested material from the stomach into usable nutrients and energy.
Symptoms that include poor appetite, indigestion, bloating and jaundice, are seen to be indications of an imbalance in the spleen. The spleen is further seen to play a part in the metabolism of water, in ridding the body of excess fluid.
In the west, the spleen is seen to be paired with the stomach but in Chinese medicine, reference is made to the spleen system, which involves the pancreas. Fluids in the body are seen in traditional Chinese medicine to be under the control of the spleen.
Fluids include digestive enzymes, saliva, mucus, fluid in the joints, tears, sweat and urine. They are categorised as thin and thick and together they are seen as nourishing all tissues and organs. In acupuncture two widely used acupuncture points - the stomach, (close to the knee) and the spleen, (halfway down from the knee) have long been seen to be connected and involved in digestive issues.
Liver
The liver is the largest organ and is an accessory digestive gland which plays a role in the body's metabolism. The liver has many functions some of which are important to digestion. The liver can detoxify various metabolites; synthesise proteins and produce biochemicals needed for digestion. It regulates the storage of glycogen which it can form from glucose (glycogenesis). The liver can also synthesise glucose from certain amino acids. Its digestive functions are largely involved with the breaking down of carbohydrates. It also maintains protein metabolism in its synthesis and degradation. In lipid metabolism it synthesises cholesterol. Fats are also produced in the process of lipogenesis. The liver synthesises the bulk of lipoproteins.The liver is located in the upper right quadrant of the abdomen and below the diaphragm to which it is attached at one part, This is to the right of the stomach and it overlies the gall bladder. The liver produces bile, an important alkaline compound which aids digestion. Liver failure in people addicted to heavy drinking have often lost their lives, due the fact that they did not take the trouble to know their digestive system.
Bile
Bile produced by the liver is made up of water (85%), bile salts, mucus and pigments, 1% fats and inorganic salts. Bilirubin is its major pigment. Bile acts partly as a surfactant which lowers the surface tension between either two liquids or a solid and a liquid and helps to emulsify the fats in the chyme. Food fat is dispersed by the action of bile into smaller units called micelles. This creates a much larger surface area for the pancreatic enzyme, lipase to work on. Lipase digests the tryglycerides which are broken down into two fatty acids and a monoglyceride. These are then absorbed by cells on the intestinal wall. If fats are not absorbed in this way in the small intestine problems can arise later in the large intestine which is not equipped to absorb fats. Bile also helps in the absorption of vitamin K from the diet. Bile is collected and delivered through the common hepatic duct which joins with the cystic duct to connect in a common bile duct with the gallbladder. Bile is stored in the gallbladder for release when food is discharged into the duodenum and also after a few hours.
Gallbladder
The gallbladder is a hollow part of the biliary system that sits just beneath the liver. It is a small organ where the bile produced by the liver is stored, before it is released into the small intestine. The bile flows from the liver through the bile ducts and into the gall bladder for storage. The bile is released in response to cholecystokinin (CKK) a hormone released from the small intestine. At the neck of the gallbladder is a mucosal fold called Hartmann's pouch, where gallstones commonly get stuck. The angle of the gallbladder is located between the costal margin and the lateral margin of the rectus abdominis muscle. The gallbladder needs to store bile in a natural, semi-liquid form at all times. Hydrogen ions secreted from the inner lining of the gallbladder keep the bile acidic enough to prevent hardening. To dilute the bile, water and electrolytes from the digestion system are added. Also, salts attach themselves to cholesterol molecules in the bile to keep them from crystallising. If there is too much cholesterol or bilirubin in the bile, or the gallbladder doesn't empty properly the systems can fail. This is how gallstones form when a small piece of calcium gets coated with either cholesterol or bilirubin and the bile crystallises and forms a gallstone. The main purpose of the gallbladder is to store and release bile, or gall. The liver produces the bile and then it flows through the bile ducts into the gallbladder. When the bile is released, it is released into the small intestine and its purpose is to break down large fat molecules into smaller ones. After the fat is absorbed, the bile is also absorbed and transported back to the liver for reuse.